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A HIERARCHICAL METHOD 
FOR OBTAINING EIGENVALUE ENCLOSURES 

E. B. DAVIES 

ABSTRACT. We introduce a new method of obtaining guaranteed enclosures of 
the eigenvalues of a variety of self-adjoint differential and difference operators 
with discrete spectrum. The method is based upon subdividing the region 
into a number of simpler regions for which eigenvalue enclosures are already 
available. 

1. INTRODUCTION 

A rigorous method of obtaining enclosures of the eigenvalues of self-adjoint op- 
erators has recently been described by Goerisch and Plum [5, 8, 9, 10]. It depends 
upon having a soluble comparison operator, from which a controlled homotopy is 
carried out. In this paper we introduce a new method which has the advantage of 
not requiring such a comparison operator, and apply it to a variety of examples. In 
Sections 2-5 we consider Sturm-Liouville operators in some detail. Sections 6 and 
7 describe how to adapt the method to higher order operators and systems, still 
in one dimension, and in Sections 8 and 9 we treat discrete Laplacians on graphs. 
Section 10 describes briefly how to modify the method in order to obtain spectral 
enclosures for the Laplacian acting in a bounded region in Euclidean space and 
other elliptic differential operators with variable coefficients; further details and 
the associated code have been developed elsewhere [1]. 

We distinguish between computing an eigenvalue in floating point arithmetic, 
and obtaining guaranteed enclosures. When using the word "enclosure" we shall 
always understand that the calculation is mathematically rigorous, and that the 
computations are done in interval arithmetic. Most numerical computations do not 
give proofs that the values obtained are correct, but depend upon the experience of 
the person who writes or uses the program concerning its range of reliability. With 
guaranteed enclosures on the other hand, the value obtained is known to be correct 
within the stated error bounds, unless there is an actual error at some stage of the 
computation. 

There are already several methods of computing the eigenvalues of a Sturm- 
Liouville operator H acting in L2(a, rn), and higher order analogues. The most 
obvious one, called shooting, solves the initial value problem for the eigenvalue 
equation Hf = Af subject to the given boundary conditions at a and then varies A 
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until the boundary condition at ,B is also valid. -Most shooting programs do not try 
to give guaranteed error bounds. Although this is entirely possible [7], the method 
is difficult to implement numerically if the potential is singular at both ends of the 
interval. 

A second method, introduced by Goerisch [5] and Plum [8, 9, 10], obtains guar- 
anteed enclosures on the eigenvalues of a self-adjoint operator H by a continuous 
homotopy method, starting from a simpler operator. This is often exactly soluble, 
but a minimum requirement is that one can obtain sufficiently good rigorous lower 
bounds on its eigenvalues. Our method is similar to theirs in that it also uses a 
homotopy from a simpler operator. However they consider a continuous homotopy 
in some parameter, which often changes the coefficients smoothly to those of an 
operator with constant coefficients, while we consider a discrete' homotopy in cer- 
tain internal boundary conditions which we choose to insert. We have compared 
our variation of the homotopy method with theirs for some of the examples Plum 
solves, and it appears to be substantially more efficient. In higher dimensions we 
are able to treat examples which are beyond the earlier method, because of the 
nonexistence of an exactly soluble operator possessing a continuous homotopy to 
the given operator. 

One may obtain rigorous upper bounds on any specified number of eigenvalues by 
means of the Rayleigh-Ritz (RR) or variational method [2]. The starting point is the 
determination of accurate approximations to the eigenfunctions by a nonrigorous 
auxiliary calculation, possibly an inverse iteration method. Once these have been 
found, one starts'again using RR to obtain rigorous upper bounds on the eigenvalues 
of the operator H in interval arithmetic. 

The lower bound is obtained by the method of Temple-Lehmann (TL) which also 
depends upon the choice of suitable test functions [2, 3, 10, 11]. However, in this 
case one also ne'eds to have crude lower bounds on the eigenvalues, and these are 
precisely what is missing at the rigorous level. More precisely if the eigenvalues of 
H, written in increasing order and repeated according to multiplicity, are nln=07 
then in order to obtain an accurate lower bound on An for some n using TL one 
needs already to be in possession of a number p such that 

An < p < An+l7 

where p is not too'close to An. There are three possible methods of obtaining such 
lower bounds. 

(i) One might hope that the upper bound on An+1 is fairly accurate and take p 
to be a slightly smaller number. This idea cannot be turned into a rigorous 
procedure and will not be discussed further. 

(ii) One can use the Goerisch-Plum coefficient homotopy method of obtaining 
enclosures for many operators. 

(iii) One can use a boundary condition homotopy method. The description of this 
new method is the main contribution of this paper. 

In the above we have not mentioned the extra complications which arise if An 
is degenerate or nearly so. There are well-known modifications of TL which deal 
with this problem [2, 8, 11], but we did not want to over-complicate the discussion 
at this stage. 
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2. NEUMANN DECOUPLING 

Let H be a Sturm-Liouville operator acting in L2(a, r). We assume that H is 
of the form 

Hf(x) -dx {a(x)df } + V(x)f(x), 

where a is a positive function in Cl [a, /3] and V E L? [a, /3]. We assume Neumann 
boundary conditions (NBC) in order to emphasize that the method does not depend 
upon the very strong monotonicity properties which hold for Dirichlet boundary 
conditions [2]. 

Our method is based upon decoupling the interval (a,,/) into 2N subintervals; 
in most examples considered by the author one can take N = 3 or N = 4. The 
subintervals do not need to be of equal length, but this is the easiest choice to make. 
We put 

aE = aot < a,1 < < Qa2N 

and let Hi denote the restriction of H to L2(agi, ai) subject to NBC. We then 
define AN to be the sum of the Hi, so that AN once again acts in L2(a, /3). The 
operators H and AN have the same quadratic form 

Q(f) j= A {a(x)lff(x)12 + V(x)If(x) 2}dx 

but with different quadratic form domains Q(H) and Q(AN). The space of all Cl 
functions on [a, ,B] is a quadratic form core for H, but to obtain a quadratic form 
core for AN one must allow the functions to have arbitrary jump discontinuities at 
each ai. Since Q(H) C Q(AN), the RR method [2] shows that the eigenvalues of 
AN are less than or equal to those of H. 

We define intermediate operators An acting in L2(a, /3) for 0 < n < N, by a 
similar method. The component operators of An are similar to those of AN but 
only using the points ai where i = 2Nm for 0 < j < 27U At each stage the 
quadratic form domain decreases, leading to the operator inequalities 

AN < AN-1 < ... < AO = H. 

The following theorem enables the eigenvalues of An to be computed rigorously 
using TL once one knows those of An+1. Since the passage from An+1 to An 
consists of putting together intervals in pairs, and the set of eigenvalues of An is 
simply the collection of all eigenvalues of its component operators Hi, it is sufficient 
to deal with the following special case, which also describes the passage from A1 to 
AO = H. 

Let a <y < ,B and let {Ai}, {,ui}, {vi}, denote the eigenvalues of the operators 
H1, H2 and H associated with the intervals (a, (y,)(a, /3), respectively, all 
subject to NBC. Finally let 

{ai} := {Ai} U {Hi} 

subject to re-ordering in increasing order and repeating according to multiplicities. 
Then {ai} are the eigenvalues of the operator A:= H1 + H2. 

Theorem 1. The eigenvalues {ai} and {vi} interlace in the sense that 

vi < Vi <? i+1 



1438 E. B. DAVIES 

for all i. Moreover, these are strict inequalities unless the derivative of the relevant 
eigenfunction of H vanishes at the point y. 

Proof. The idea is that H differs from A by a rank one perturbation in a cer- 
tain singular sense. More precisely let s < ao and compare (A + s)-1 with 
(H + s)-1. Both have Green functions which can be computed from the two fun- 
damental solutions of the differential equation 

df df1 
a(x) Vxfx)sx=O dx{( dx f V(X)f(X) + sf(x) 0. 

If one computes the difference of the two kernels one finds that it is a rank one 
operator. The inequality which we want is equivalent to 

(ai + s)> > (Vi + S) > (ai+1 + S) , 

and this holds whenever one has a positive rank one perturbation by an application 
of the min-max principle. For an alternative proof see Theorem 5. 

The eigenvalues of H1 are all distinct, as are the eigenvalues of H2, because Hi 
are Sturm-Liouville operators. However there may be coincidences between the two 
sets of eigenvalues, which imply that vi = ui+,. This is not a serious problem, but 
it can usually be avoided if desired by moving the point -y slightly. Assuming that 
this has been done it is not possible that vi = vi: this equality would imply that the 
corresponding eigenfunction of H happens to have zero derivative at -y, in which 
case it is also an eigenfunction for both H1 and H2, so vi = ui+i. 

3. THE ENCLOSURE ALGORITHM 

We start with a subdivision of (a, fB) into 2N parts which is fine enough for us 
to be able to obtain disjoint enclosures on the eigenvalues of each component Hi 
by comparison with constant coefficient operators. FRom here onward we suppose 
that we are only interested in obtaining enclosures on those eigenvalues of H which 
are less than some preassigned number E. The larger the value of E, the larger one 
must take N in order to be able to start the procedure. The following lemma shows 
that it is sufficient for the coefficients to be close to constant in each interval. We 
only consider the case of H itself for notational simplicity, but the lemma should 
actually be applied to each component Hi of AN. 

Lemma 2. Suppose that aO < a(x) < a, and vo < V(x) < v1 for all x E (a,:). 
Then the eigenvalues {Ai} of H satisfy 

aoi 2i2/(f _ a)2. + Vo < Ai < a,ir2i2/(f - a)2 + Vl. 

These enclosure intervals are disjoint for all eigenvalues less than a given number 
E' if 

O < Vi-Vo < aor2/(C-a)2 

and 

0 < V1 - Vo < M2ao7r2/(f3_ a)2 _ (M -1)2a,ir2/(C- a)2, 

where M is the smallest integer such that 

E' < vo + M2ao7r2/(f - a))2. 
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Proof. The first inequality follows by comparing H with the obvious constant co- 
efficient operators, whose eigenvalues are exactly computable. The proof of the 
second uses the observation that 

VO + m 2ao7r 2/( -)2 _ V - (m - 1)2ar2/( a) 
is a concave function of m which must therefore take its minimum value on the 
interval [1, M] at one of its ends. 

Note. Since the initial intervals (ai-, ai) are quite short, the integer M in 
Lemma 2 may be quite small and Lemma 2 may not impose strong conditions on 
the constants vo, vi, ao, ai. 

The algorithm for obtaining enclosures of the eigenvalues of H has several stages. 

Stage 1. We have to choose an initial subdivision of the interval (a, ,B) such that 
each of the subintervals (ai-1, ai) satisfies the conditions of Lemma 2. This can be 
done in several ways, and is discussed further in Section 4. 

Stage 2. We choose a number E' > E, for example E' := 9E/8, and put En 
E + n(E' - E)/N for all 0 < n < N+ 1. 

Stage 3. We subdivide (a, ,B) as described above for a value of N which is large 
enough for us to obtain disjoint intervals which enclose each of the eigenvalues of 
each component Hi of AN up the number EN+,. 

Stage 4. We use RR and TL to obtain accurate enclosures of each of the eigenval- 
ues of each component Hi up to the number EN. Putting these together in pairs 
we obtain rough enclosures of the eigenvalues of each component Hj of AN-i by 
virtue of Theorem 1. These enclosure intervals overlap very slightly because the 
previous accurate enclosures were not perfect. 

Stage 5. We apply RR to each component Hi of AN-1 to obtain smaller upper 
bounds on each of the eigenvalues of each Hj and so to convert the above into rough 
but nevertheless disjoint enclosures of the eigenvalues of each Hj up to EN. 

Stage 6. We apply TL to obtain accurate enclosures of each of the eigenvalues of 
each component Hj of AN-1 up to EN-1 

Stage 7. We repeat the process inductively until we reach accurate enclosures of 
each of the eigenvalues of H up to E. 

Some comments are in order. 
The introduction of the sequence En at Stage 1 is needed because TL requires a 

significant gap above any eigenvalue to be estimated. If there is an eigenvalue very 
close to the upper limit En at any stage then that eigenvalue cannot be estimated 
accurately. 

When the eigenvalues of two adjacent operators are combined in Stage 3 it 
may happen that two eigenvalues of the new list created coincide to a high degree 
of accuracy. This is one possible cause of the problem mentioned in the next 
paragraph. 

The procedure in Stage 5 may occasionally fail because RR may not decrease 
the upper bound on an eigenvalue enough to make the intervals disjoint. This is 
handled by using a higher order version of TL whenever this occurs. In principle 
this could occur for all eigenvalues, in which case the algorithm might halt, but this 
is extremely unlikely unless there is a symmetry of the underlying problem, which 
should have been taken into account before starting the computation. 
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Ultimately we do not guarantee either that the algorithm finishes or that the 
results which it yields are of the desired accuracy, but only that if the algorithm 
does finish, then the enclosures obtained are correct. If the enclosures are not 
sufficiently accurate, then one must start again with a larger test function space. 

Although we specified that the second order coefficients a(x) of the differential 
operator should be C1, there is no difficulty in accommodating simple jump dis- 
continuities. Once one has determined the location of these points, they should be 
included in the partition {ai}i?0 of the interval (a, r). The discontinuity of a(x) at 
a point -y imposes an effective internal boundary condition on H at -y, which must 
be taken into account when specifying its operator domain, but has no effect on its 
quadratic form domain. 

One way of estimating the total computational effort is to count the number of 
distinct operators for which we have to compute some of the eigenvalues accurately. 
At the level n this is 2n, so the total number is 2N+1 - 1. 

Since parallel machines will become more important, it should be noted that 
the computations of the eigenvalues of the different operators H3 at any particular 
level are entirely independent, and may be carried out simultaneously. Thus on a 
parallel machine the total computational effort is proportional to N + 1. In all the 
examples we have considered this means the algorithm has only three or four steps! 

Both of the above estimates of computational effort are too pessimistic. At the 
higher levels it may be seen in the examples we analyse below that the number of 
eigenvalues of each operator to be computed is very small, because the eigenvalues 
are far apart. So the computation is much faster at the higher levels than indicated 
above, whether or not one has a parallel machine. 

It is clear that the same procedure may be used irrespective of the boundary 
conditions at a and ,B. It may also be applied to potentials which are singular at 
the end points provided one has crude bounds on the eigenvalues to replace those 
of Lemma 2. Its extension to systems and to higher order differential operators is 
described in Sections 6 and 7. 

4. THE SUBDIVISION OF (a,,/) 

We have suggested above that the subdivision of (a, ,B) should be defined by 

aei := at + i(o - a)/2N 

for 0 < i < 2N where the size of N is determined by Lemma 2 as indicated in 
the algorithm. However it is possible that when combining two eigenvalue lists 
one finds that two eigenvalues coincide or are undesirably close. This is not an 
insuperable problem since one can use a higher order version of TL to obtain the 
required lower bounds on the eigenvalues. However, there is a systematic way of 
avoiding it, unless one of the eigenfunctions has an interval of constancy. 

We first emphasise that there is no hope of obtaining accurate enclosures of 
the eigenvalues of H unless there is some other nonrigorous method of computing 
the eigenvalues, such as unsupplemented RR or shooting, which in fact give good 
approximations to the eigenvalues and eigenfunctions. We use these computed 
eigenfunctions to choose the bisection point -y of (a,,/) as described below. We 
then do the same for both of the subintervals (a, -y) and (y, /) and so on until 
we have produced a fine enough subdivision of (a,,/) according to the criterion 
of Lemma 2. If we have misled ourselves about the best choice of the points ai, 
then nothing is lost because we can still use the above algorithm. If, however, the 
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approximations to the eigenfunctions are accurate enough, then the method we now 
describe will have prevented the problem mentioned above. 

Let us suppose that there are k + 1 eigenvalues of H less than E, and that 
the corresponding eigenfunctions fr have zero derivatives at p(r) points for each 
0 < r < k. Then we choose -y somewhere near the center of (a, ,B) but not at or 
near to any of the above points. Since there are P := p(O) + . + p(k) such points 
altogether, there exists -y E (3a/4 + p3/4, a/4 + 3o3/4) which is at a distance at least 
(,B- a)/4P from each of the points. 

Whether or not it is worth using this iterative procedure for selecting the subdi- 
vision of (a, ,B) remains to be seen. In the two cases solved below, it appears that 
using a uniform subdivision is perfectly satisfactory. 

There is an entirely different reason for choosing a nonuniform subdivision of 
(a, B), if the coefficients of H vary substantially from one part of the interval to 
another. If the potential is bigger than the number E in some interval, then one 
should make that entire interval one of the (ai-jai) , however big it is, because 
there will be no relevant eigenvalues associated with it. More generally the size of 
each interval (ai-1, ai) should be as big as possible subject to being able to obtain 
disjoint enclosures of all of the eigenvalues of Hi less than E. This procedure reduces 
the number of operators for which one has to compute some of the eigenvalues. A 
more thorough investigation might involve the uncertainty principle, but Lemma 2 
suffices for most purposes. 

5. EXAMPLES 

We illustrate our general theory with two numerical examples, which are solved 
using shooting and floating point arithmetic, not using interval arithmetic as is 
actually required. There are two reasons for this, the first being that our goal here is 
only to examine the feasibility of the method, not to create a new software package. 
The second is that one should not use a high-powered technique for obtaining 
eigenvalue enclosures until one has a good idea of the approximate location of the 
eigenvalues. This information cannot be used in the final computation because it 
is not rigorous, but it may indicate problems which need special attention in the 
rigorous computation. 

The two examples were studied in detail by Plum [8] using a continuous homo- 
topy in the coefficients. 

Example 3. Let H be the operator defined by 

d2f 
Hf (x) f-dxf + 8 cos(x)2f(x) 

acting in L2(0, 7r) subject to NBC. Plum obtained enclosures on the eigenvalues 
ranging from 

,ao = 2.4860431150 

to 

18 = 68.0317586 

using his homotopy method, RR and TL, and interval arithmetic. Putting N = 

2 the conditions of, Lemma 2 are satisfied for any choice of E for each of the 
components Hi, 1 < i < 4, with vi - vo = 4, ao = a, = 1 and ai - a?1 = 7r/4. 

Now let K1, K2 be the two operators at level one, acting in the intervals (0, 7r/2) 
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and (7r/2, 7r). We have computed the eigenvalues of all of the operators above up 
to the limit E = 70. 

For i = 1, 4, Lemma 2 yields the crude enclosures 

4 < ,uo < 8, 20 < ,ul < 24, 68 < ,U2 < 72, 

while more accurate, but nonrigorous, calculations provide 

po 6.454, ILl 22.450, /2 70.515. 

For i = 2, 3, Lemma 2 yields the crude enclosures 

0 < Io < 4, 16 < ,L < 20, 64 < I2 < 68, 144 < ,U3, 

while more accurate calculations yield 

uo - 1.364, ,al 17.693, '2 
- 65.503. 

We now join together the eigenvalue lists of H1 and H2 to obtain the list 

1.364, 6.454, 17.693, 22.450, 65.503, 70.515. 

If these values are indeed accurate, then according to Theorem 1 they interlace the 
eigenvalues of K1 and provide the basis for the use of RR and TL for obtaining 
accurate enclosures of the eigenvalues of KI. The eigenvalues of K1 are (again 
nonrigorously) 

2.486, 9.173, 20.141, 40.057, 68.032. 

These coincide with the eigenvalues of K2 since we have not made use of the sym- 
metry of the operator about x = 7r/2. When we combine this list with a second 
copy of itself, the resulting list interlaces the eigenvalues of H, namely 

2.486, 6.397, 9.173, 13.370, 20.141, 29.084, 40.057, 53.042, 68.032. 

It would have been possible to avoid the coincidence of the eigenvalues of K1 and 
K2 by starting with the partition 0, 0.6, 1.2, 2.1, 7r instead of the partition into 
equal subintervals. 

The above computation involves determining the eigenvalues of 7 operators at 3 
different levels. At the top level we only had to compute the first 3 eigenvalues of 
each operator Hi, at the middle level we had to compute 5 and at the bottom level 
we had to compute 9. 

By comparison Plum computed the eigenvalues of 10 intermediate operators, 
with less scope for parallelization since each computation depended on the previous 
one. We computed a total of 31 eigenvalues, while Plum computed at least 90. Plum 
was not, however, particularly concerned with minimizing numerical effort in his 
paper. 

Example 4. We consider the operator 

d2f 
Hf (x):--dx2 + lOOOxf (x) 

acting on L2(0, 1) subject to DBC. This is essentially the same as Example 2 of 
Plum [8], who obtained enclosures on the eigenvalues ranging from 

Ho = 233.810735 

to 

L9 = 1508.1083 
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The unpublished enclosures of Lohner [7], obtained by shooting, are considerably 
more accurate. We put N := 3, ai := i/8 for 0 < i < 8 and E := 1000. A 
modification of Lemma 2 to cope with the DBC at 0,1 yields the following crude 
eigenvalue enclosures. 

In (0,1/8) we have initially 

157 < /'o < 283, 1421 < ,l < 1547, 

and then more accurately 

Po- 245.225, ,ui - 1486.798. 

In (1/8,1/4) we have initially 

125 < po < 250, 756 < Il < 882, 

and then more accurately 

uo - 185.471, ,al 820.761. 

We omit the results for the other intervals, each of which involves the computation 
of only two eigenvalues, all higher eigenvalues being bigger than 1500. We now 
consider level 2. Putting the previous lists together in pairs and considering the 
interval (0,1/4) we obtain the crude bounds 

185.471 < iuo < 245.225 < ,a1 < 820.761 < ,A2 < 1486.798 < ,3. 

In fact the upper bound on each pui is slightly bigger than the lower bound on 
1ui+i, because the number separating them is not exact, but the use of RR reduces 
the upper bound on each eigenvalue substantially and so yields disjoint enclosures 
of the eigenvalues (or actually would do so if the calculations were rigorous). All 
higher eigenvalues are greater than 1500. The accurate eigenvalues for the interval 
(0, 1/4) are 

-o = 205.942, pi = 490.938, A,2 = 1115.419. 

We omit the further computations at levels 2 and 1. The full list of eigenvalues of 
A1 is 

233.705, 400.348, 532.152, 601.881, 748.110, 825.999, 1007.897, 

and interlaces the list of eigenvalues of H, namely 

233.811, 408.795, 552.056, 678.679, 794.738, 906.461, 

which agree with the enclosures of Plum [8]. We next comment on the amount of 
computation needed by our method. 

The total number of operators considered by our method is 15, compared with 
50 in Plum's method, since he puts 6 = 0.02. If one has a parallel machine, then 
the relevant quantity is the number of levels, namely 4. For each operator at level 3 
we needed to compute 1 or 2 eigenvalues. For each operator at level 2 we computed 
3 eigenvalues. For the two operators at level 1 we computed 5 and 3 eigenvalues. 
Finally we computed all 6 eigenvalues of H in the interval [0,1000], making a total 
of at most 42 eigenvalues computed. Plum's method involves the computation of 
at least 300 eigenvalues, but he did not attempt to minimize this number. 
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6. HIGHER ORDER OPERATORS 

The procedure that we described above can be modified to treat higher order 
differential operators in one dimension. The difference in the higher order case is 
that decoupling an interval into two parts by introducing a Neumann boundary 
condition is not equivalent to a rank one perturbation. However it is still of finite 
rank, as we will now explain. 

Let H be defined formally on L2(a, ,B) by 

Hf (x) :- (-1)m dxm {a(x) df} 

where a E Cm [a, /] is positive. Our method can also deal with more complicated 
operators involving lower order terms. We assume Neumann boundary conditions, 
in the sense that we take the quadratic form of the operator to be 

Q(f)W:] a(x) ddmf dx 

with domain the Sobolev space Wm2(ca, /3). It is known that Q is closed on this 
domain, and we define H to be the nonnegative self-adjoint operator associated 
with the form in the standard manner. 

Functions in Wm,2(ac,o) are continuous on [ca,,/] along with all derivatives of 
order less than m. Given av < -y < , we introduce a Neumann boundary condition 
at -y by replacing Wm,2 (a, ,B) by the space Qm in which we allow the functions and 
their first m - 1 derivatives to have simple jump discontinuities at -y. Let Hm be 
the corresponding operator on L2 (a, ,B). We now define a chain of operators Hr for 
0 < r < m with Ho H. Each of them is associated with the same form Q but on 
different domains Qr. We define Qr to be the space of functions in QM such that 
all derivatives of f from the order r to m - 1 inclusive are continuous at -y. Thus 
Qr c Qr+i for all r, each being of codimension one in the next. 

Theorem 5. Let H and K be two nonnegative self-adjoint operators on a Hilbert 
space H such that their quadratic forms coincide on their common domain. Suppose 
also that the form domain Q(K) of K is a subspace of codimension 1 in Q(H). 
Finally suppose that H and K both have purely discrete spectrum and that their 
eigenvalues, written in increasing order and repeated according to multiplicity, are 
{An}?n?=0 and {wn}?n=o, respectively. Then the two sets of eigenvalues interlace in 
the sense that 

An <- ln < An+ 1 

for all n. 

Proof. This is an immediate consequence of the min-max principle, since every 
subspace of dimension n of Q(H) is either already contained in Q(K) or intersects 
Q(K) in a subspace of dimension n - 1. 

The application of this theorem to higher order operators is immediate. In order 
to remove a Neumann boundary condition at the point y we have to pass through a 
chain of operators Hr with r decreasing from m to 0. At each stage the eigenvalues 
interlace, and this is the condition needed to apply the TL technique, as described 
in Section 3. 

We have described the operator Hr in terms of its quadratic form domain. This 
is sufficient for the application of the RR technique. However, the TL method 
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depends upon the selection of test functions from the operator domain, so we need 
to describe this. We first comment that functions in any of the operator domains 
lie in C2m-1 [a, y] + C2m-1 [y, i] because of our smoothness assumption on the 
coefficient a(x). Also the weak derivative f(2m) (x) in each subinterval must lie in 
L2. Of course eigenfunctions are more regular and must lie in a2m vo, y] +02m [y, p3]. 

We now specify the boundary conditions. The choice of quadratic form domain 
implies that if f lies in the operator domain then f(r) (x) = 0 for x = a, 3 and for 
all m < r < 2m - 1, i.e., Neumann boundary conditions. We need to impose 2m 
boundary conditions at -y? to obtain a self-adjoint operator, and these are different 
for each operator Hr. Our quadratic form assumption is that f(s) (y-) = f(s) (Y+) 
for all s such that r < s < m - 1. This corresponds to the assumption that 

f(s)(Y+) = f(S)(y-) for all r < s < m-i, 
(af(m))(S)(Qy+) = (af(m))(s)(Qy-) for all 0 < s < m -r -1, 

(af(m))(S)(Q?) = 0 for all m-r < s < m-1, 

for all f in the operator domain of Hr, as one may see by carrying out some 
integrations by parts and requiring the boundary terms to vanish. 

The test functions chosen for the TL procedure must satisfy all of the above 
boundary conditions. One could use a space consisting of different polynomials in 
each subinterval, with the coefficents restricted to satisfy the boundary conditions 
at ae, /, -y, but many other choices are possible. 

7. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

A self-adjoint system of Sturm-Liouville operators is defined as an Operator H 
acting in L2((ae, p), Cm) according to the formula 

m 
dd 

M 

Hfi(x) -E -{ ai,j (x) d + E Vi, (x) fj (x) 
j=1 

ddx 
j=1 

We assume that aij E Cl[ca, 3] and Vij E Lcc[a, 3] for all i,j. We assume that 
both matrices are real symmetric for all x E [le, 3] and that aij is uniformly positive 
definite on [le, p]. We finally assume that the operator satisfies NBC in the obvious 
sense for systems. 

The computation of the eigenvalues of H proceeds as in the scalar case with 
one exception. Namely the removal of an internal NBC involves a perturbation of 
rank m rather than of rank 1 as in the scalar case. We deal with this as we did 
for higher order Sturm-Liouville operators in the last section. Instead of writing 
out the details in the general case, we solve a simple example, which exhibits the 
essential features of the general case. 

Example 6. Put m = 2 and ai,j(x) := 6ij for all i,j. Let ae < 0 < / and let u,v 
be arbitrary nonnegative numbers. Then define the matrix-valued potential V by 

I 0 if a~ < x < 0, 
V(x): v v ftz? 

if 0 < x </3 

Let H1, H2, H be the operators associated with the above expression acting in the 
intervals (ae, 0), (0, 1), (ae, /), respectively, all subject to NBC. Let K be the "same" 
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operator acting in the interval (ae, ), subject to NBC at ae, 3, and the following 
boundary conditions at 0, expressed in terms of the operator domain: 

fi(O+) = fi(O-), 

fi (O+) = fi (o 

f2(O+) = 0, 

f2(?-) = o. 

If A1 is the operator H1 + H2 acting in L 2(ae,), then the quadratic forms of 
A1, K, H are all given by the expression 

Q ) /a f12 + I f211 S +E Vij(x)fi(x)fj(x)}dx. 
i,J=1 

A1 has the largest quadratic form domain, W 12((a, 0), C2)+W1'2((0, p), C2), while 
H has the smallest quadratic form domain W1'2 ((ae, ), C2), of codimension 2 in 
the previous one. In between these lies the quadratic form domain of K, which is 
the set of f E W1'2((a, 0), C2) + W1'2((01,3), C2) such that fi (0+) = fi (0-). 

Since each quadratic form domain is a subspace of codimension 1 of the previous 
one, the eigenvalues of the operators interlace in the sense of Theorem 5. The 
eigenvalues of H1, H2 are exactly computable, so these observations allow us to 
obtain enclosures of the eigenvalues of H using RR and TL in the standard manner. 

We have chosen this example because the eigenvalues of all four operators in- 
volved are essentially exactly computable, and it is easy to confirm the interlacing 
property directly. We put a = -1, 3 := 2, u = 2v = 100, and compute all of the 
eigenvalues of each operator up to E := 50. 

The eigenvalues of H1 consist of all numbers of the form u+n27r2/aie or M21r2/a 2, 
where m, n are nonnegative integers. This yields the list 

0, 9.870, 39.478, 88.826. 

The eigenvalues of H2 consist of all numbers of the form 2v + nr2ir2/32 or m2 20, 
where m, n are nonnegative integers. This yields the list 

0, 2.467, 9.870, 22.207, 39.478, 61.685, 88.826. 

The eigenvalues of A1 are obtained by combining these two lists to obtain 

0, 0, 2.467, 9.870, 9.870, 22.207, 39.478, 39.478, 61.685, 88.826. 

The eigenfunctions of K and H are linear combinations of trigonometric and expo- 
nential functions, and the eigenvalues are obtained by solving certain trancendental 
equations associated with the boundary conditions at 0. The eigenvalues of K are 
approximately 

0, 0.468, 4.298, 9.870, 12.288, 24.757, 39.478, 41.865, 63.639, 

which interlace those of A1. The eigenvalues of H are approximately: 

0.449, 1.609, 4.735, 11.746, 17.747, 27.360, 41.177, 

which interlace those of K. 
It may be seen that although the eigenvalues do interlace as the theory predicts, 

the smallest eigenvalue of H is rather close to the second eigenvalue of K, a fact 
which does not help the efficiency of the TL method. The reason for this is that 
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the coefficients u, v are rather large, and this has the effect of partially decoupling 
the two intervals. Accurate lower bounds on the smallest eigenvalue of H can be 
obtained by using a higher order version of the TL method. 

8. OPERATORS ON GRAPHS 

The method that we have developed for Sturm-Liouville operators may be ap- 
plied with modifications to elliptic partial differential operators and to discrete 
Laplacians on graphs. The first application demands the use of the quite compli- 
cated machinery associated with the finite element method. We decribe here the 
second application, which is of independent interest, and also involves the theory 
of rank 1 perturbations in certain situations. 

We define a graph to be a finite set X together with a set S of directed edges. 
We assume that if e := (x, y) E 6, then e := (y, x) E E. We define the associated 
Laplacian to be the operator acting on 12(X) with matrix 

( 1 if (x,y) E, 

Axly := deg(x) if x = y, 
e otherwise, 

where deg(x) #{y E X: (x, y) E E} is the degree of x. 
The quadratic form corresponding to this matrix is 

Q(f) := E IfS(x) - f WS 
(x,y) C& 

which is a nonnegative Dirichlet form, with all of the structural consequences of 
this fact. We follow standard practice in referring to the eigenvalues of the operator 
A defined above as eigenvalues of the graph X. 

Although the matrix A is finite the determination of its eigenvalues is not 
straightforward if the graph is very large, and one actually has the same prob- 
lems in obtaining guaranteeed enclosures as for infinite-dimensional problems. The 
first main problem is the nonexistence of standard comparison problems. There 
are very few finite graphs for which one can compute the eigenvalues exactly, and 
there is no possibility of using a change of variables to map a graph to a standard 
soluble one as in the case of partial differential operators. 

We present two procedures for obtaining enclosures of eigenvalues of finite graphs. 
The first applies to the case in which the graph is obtained from one for which one 
already has enclosures of the eigenvalues by the removal of a small number of chosen 
vertices. We leave the reader to formulate the corresponding lemma relating to the 
addition of a small number of vertices. 

Lemma 7. Let Y be a subset of X obtained by the removal of a small number of 
vertices, and let g be the set of (undirected) edges of X which join points of Y to 
points of X\Y. Then one may compute enclosures of the eigenvalues of Y from 
those of X in #(5) homotopy steps. 

Proof. Let {ei}jU1 be some enumeration of the edges in g. Let Ai be the matrix 
acting in 12(X) which is obtained from that of A by the removal of the contribution 
of the edges e, . . . , ei. Then 
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and each matrix is a rank 1 perturbation of the next one in the chain. It follows by 
an argument similar to that of Theorems 1 and 5 that the eigenvalues of Ai interlace 
those of Ai+, for every i. This is the fundamental requirement for transferring 
accurate enclosures of the eigenvalues from Ai to Ai+, by the RR and TL methods. 
The operator An is the direct sum of the discrete Laplacians of Y and X\Y. Since 
we have assumed that X\Y is small, its eigenvalues may be computed independently 
by a direct procedure. Removing these eigenvalues leaves those of Y. 

Let X be a finite subset of ZN for some N. The edges of X are defined to be 
those pairs x, y E X such that 

N 

E lxr-Yr| = 1. 
r=1 

In this situation we have the bound deg(x) < 2N for all x E X. The operator A 
may be considered to be the discrete Laplacian on X subject to Neumann boundary 
conditions, since 0 is always an eigenvalue of A, the corresponding eigenfunction 
being constant. The multiplicity of the eigenvalue 0 equals the number of connected 
components of the graph. 

Example 8. Let X c z2 be the set 

{(m,n):1 < m < k 1 <rni< k}, 

and let Y be obtained by the removal of the set 

Z := { (1, 1), (1,2)1(21 1)} 

Then an enumeration of the (undirected) edges of g is ei := ((1, 2), (2, 2)), e2 

((2,1),(,2)), e3- ((1,2)(1,3)),e4 ((2,1),(3,1)). We chose k := 7 and 
computed the smallest 6 eigenvalues of the operators Ai. The interlacing property 
is verified. The eigenvalues of A4 coincide with those of the discrete Laplacian of 
Y, together with the eigenvalues 0,1,3 of the Laplacian of Z. The numbers in the 
table below are actually k2 times the eigenvalues, so that they may be compared 
with the eigenvalues of -A on the unit square subject to NBC. 

11O 11l 112 /13 /14 115 

A 0 9.705 9.705 19.410 36.898 36.898 
A1 0 9.515 9.705 19.142 33.499 36.898 
A2 0 9.361 9.574 18.367 30.187 34.782 
A3 0 5.868 9.540 13.119 23.836 34.571 
A4 0 0 9.095 11.471 23.049 32.525 

The interlacing property states that the number A immediately above any eigenvalue 
,u of Ai in the table is a lower bound for the next eigenvalue of Ai. Let us suppose 
that the values in the first row of the table are close to accurate enclosures of 
the eigenvalues of A, and that all of the other entries in the table are rigorous 
upper bounds, which we expect to be accurate. Using the interlacing property 
we deduce that /15(Al) = 36.898. The fact that the (upper bounds on the) other 
eigenivalues of A1 are widely separated enables us to use TL to confirm that they 
have been found accurately. Interlacing establishes that /115(A2) > 33.499, and we 
confirm that the other eigenvalues of A2 have been computed accurately as before. 
If interval arithmetic has been used, we end up with accurate enclosures of all of 
the eigenvalues of A4 up to and including 114. The final reason why this procedure 
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works is that the entries in the column labelled p4 and the row labelled A4 decrease 
rapidly enough for TL to be an efficient method. 

The above example is purely illustrative: the same procedure can be carried 
out for values of k which are large enough for the problem of obtaining eigenvalue 
enclosures to be nontrivial. If at some stage an eigenvalue does not decrease enough 
from one stage to the next for TL, then either we have to proceed to a lower 
eigenvalue or we must use a higher order version of TL. 

The above method is not suitable for obtaining enclosures of the eigenvalues of 
a graph which is far from any graph for which eigenvalue enclosures are already 
known. As a typical example we mention the set of all (m, n) E Z2 which satisfy all 
three inequalities m 2 + n2 < 16d2, (m - 2d)2 + n 2 > d2, and (m + 2d)2 + nr2 > d2, 
where d is a large positive number. 

In cases such as the above we combine the continuous homotopy procedure in- 
troduced by Goerisch and Plum with the hierarchical homotopy method we intro- 
duced for Sturm-Liouville operators. The idea is to subdivide X into several more 
or less convex parts each of which is small enough that eigenvalue enclosures can 
be obtained by a direct method. These parts are then joined together in pairs as 
described below, obtaining eigenvalue enclosures for the larger parts. If the initial 
subdivision is into k *= 2N parts, then after the first stage one has 2 N-1 parts, 
and the procedure terminates after N stages. It remains to describe how to join 
together two subgraphs. 

Let X = Y U Z where Y, Z are disjoint subgraphs, let g be the set of edges 
joining points of Y and Z, and let Y be the complement of g in the set S of all 
edges of X. Given 0 < s < 1, let A, be the matrix associated with the quadratic 
form 

Q(f) E If (X) _ f (y)12 + 2E If (x) _ f(Y)1 
(x,y) cJ (x,y) cg 

Lemma 9. The eigenvalues of A, are increasing real analytic functions of the pa- 
rameter s. The eigenvalue list of Ao is just the union of the two eigenvalue lists of 
Y and Z. At the other end A1 is the discrete Laplacian of X. 

Proof. The first statement is part of received knowledge [6], while the second de- 
pends upon the fact that Ao is the direct sum of the discrete Laplacians of Y and 
Z. 

The procedure for obtaining eigenvalue enclosures for X is similar to that of 
Goerisch and Plum [5, 8]. We consider the operators As(r) for a large enough chosen 
sequence 0 = so < si < ... < sp = 1. If we have enclosures of the eigenvalues of 
As(i)) then these provide lower bounds on the eigenvalues of AS(i+l) which may 
be adequate to obtain enclosures of the eigenvalues of the latter operator by the 
RR and TL procedures. Eigenvalue crossings may occur at certain values of s, but 
these are handled using the higher order TL procedure. 

Example 10. Let X :Y U Z c Z2 where 

Y {(m, n): 1 < x < h-1, 1 < y < x} 

Z {(m, n): h < x < 2h-1, 1 < y < 2h-x} 

where h is some positive integer. Let the set S of edges of X be those inherited 
from Z2 as before. The undirected edges of g are of the form (h - 1, r), (h, r) where 
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1 < r < h-1i and we separate the triangle X into two smaller triangles. We list the 
7 smallest eigenvalues of A, below for h 8 and s := 0, 0.2, 1. A larger number 
of values of s were originally computed, but these are the only ones needed. 

I-o I'Li I'2 I3 54 A5 A6 
Ao 0 0 0.12061 0.15224 0.25330 0.32139 0.46791 

Ao02 0 0.04705 0.13054 0.23249 0.27273 0.42485 0.49950 
A1 0 0.07244 0.13259 0.27719 0.33076 0.51058 0.60389 

Each eigenvalue pi is a monotonic increasing function of s. Suppose that we al- 
ready know that the numbers in the first row are accurate approximations to the 
eigenvalues of Ao, and that the other numbers are rigorous upper bounds to the 
corresponding eigenvalues, as determined by RR. We use the monotonicity to de- 
duce that ,u6(Ao.2) > 0.46791. Using TL we then confirm that ,u5(Ao.2) is accurate. 
Monotonicity implies that ,u5(Aj) > 0.42485 and we are finally able to confirm the 
accuracy of p, (A1) for j = 4,3,2,1,0 in turn by TL. If all of the computations have 
been done in interval arithmetic, we have obtained enclosures of the eigenvalues of 
A1 from those of Ao. 

The values of ,ui(A,) for s = 0. 1(0.1) are 

0, 0.03153, 0.04705, 0.05559, 0.06085, 0.06439, 

0.06693, 0.06882, 0.07030, 0.07148, 0.07244. 

This list exhibits a common pattern of rapid increase for small values of s followed 
by little change for large values. In fact it follows from RR that u1l (A,) is a concave 
function of s, but this need not be true for higher eigenvalues. 

A precondition for applying the above method is that eigenvalue enclosures of 
the parts X1,... , Xk into which we subdivide X should already be known. This 
may be achieved by making each Xi small enough so that all of its eigenvalues can 
be computed by a direct method. If some of the parts are rectangles or one of a very 
small number of other graphs, then their eigenvalues may be exactly known. The 
following argument shows that for some purposes we may dispense with knowledge 
of accurate enclosures of the eigenvalues of the parts entirely. It requires instead an 
assumption about the geometry of the parts, expressed initially in terms of a lower 
bound on their first nonzero eigenvalues. 

Given a > 0 we say that a finite graph (X,6) lies in Ca if its first nonzero 
eigenvalue ,u1 satisfies 

1Al > ad(X,<)-2, 

where d(X, 8) is the diameter of the graph. We investigate the geometric signifi- 
cance of this condition in the next section. The value of b in the following theorem 
indicates how small the individual subsets in a partition of X need to be in order 
to be able to obtain accurate enclosures of the eigenvalues of X without already 
possessing accurate enclosures of the eigenvalues of the subsets. 

Theorem 11. Suppose that a > 0 and that {Xj}k=1 is a partition of the graph X, 
each subset of which lies in Ca. Suppose also that b > 0 and that 
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for all 1 < i < k. Then one may obtain accurate enclosures of all eigenvalues of X 
less than 

E := ab2 d(X, g)-2 

by a continuous homotopy method. 

Proof. The conditions of the theorem imply that the first nonzero eigenvalue of 
each part is at least as big as E. Let (Y, F) be the union of two of the subgraphs 
(Xi, ?i), and let (Y, F) be obtained by including also those edges of the graph (X, E) 
which connect the two parts of Y. The spectrum of (X, F) below E consists of the 
eigenvalue 0 with multiplicity 2 and nothing else. This precise if unusual information 
is enough to obtain accurate enclosures of the spectrum of (Y, F) below E by the 
Goerisch-Plum continuous homotopy method. By a repetition of this method, 
carried out in a hierarchical manner, one eventually obtains accurate enclosures of 
the spectrum of (X, E) below E. 

9. THE POINCARE? INEQUALITY 

In order to implement the above ideas, one needs to obtain geometric conditions 
which imply that the first nonzero eigenvalue of a connected graph (X,68) has a 
lower bound of order d-2, where d is the diameter of the graph. Examples in [4] 
show that this is not always uniformly true for a family of graphs parametrized by 
the diameter as d -* oo, but their discrete version of the Poincare inequality can be 
rewritten to provide exactly what we need. We develop the theory of this section 
at a greater level of generality than before, because of its independent interest. 

Let b: 6 -* (0, oo) be a positive weight function satisfying b(e) = b(e) for all 
e E 86. Let IXI denote the number of points in X. Given a path -y (-y1,. -k), 
we define its length to be 

k 

11 Zb(yi_i,yi)- 

and then define the diameter d of X using this notion of length, in the usual manner. 
Let A be the operator on 12(X) associated with the quadratic form 

Q(f3 := 2 E b(x, y) If (x) 
(XIOGEC 

It is easily seen that O is an eigenvalue of A of multiplicity 1, the corresponding 
normalized eigenfunction satisfying q0(x) = IXI-112 for all x E X. 

In order to obtain a lower bound on the first nonzero eigenvalue ,a1 of A, we 
follow closely Diaconis and Stroock [4] (and Poincare). Suppose that F is a set of 
paths in X, one path from F joining every ordered pair of points x, y E X. We 
impose two constraints on the choice of this set of paths. The first, that 

1Yx,yJI < aed 
for some ae and all x, y E X, is self-explanatory. The second is that 

#{a E r: e E ty} < pdlXl 

for some 0 > 0 and all e E 86. Since the total number of paths in F is IX12, this is 
a constraint on how well distributed the paths are. The assumption is in precisely 
the form needed for applications. 
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Theorem 12. Under the above two assumptions we have 

/> ad2 

Proof. If e (x,y) E 6, we put af(e) f(y) - f(x). We have 

jXIjjj0_-(0, 00)00112 2E ?()-?y)2 
x,yCX 

- 2 S S E 0($(e) ) 
x,yCX eCiyz,y 

1E IS E S b(e) &q(e)12 
x,yCX e-E , y 

< KQ(b), 

where 

K: = sup 5 KXY 
E, 9Yx, y E)e, 

< ad#{y E r: e Ey} 

< a3d 21XI. 

The proof is completed by using the variational characterisation of Al 

infinf{ -(0,40o)0o112 :O}9E12(X) 

Upper bounds of a similar type on p1i are relatively easy to obtain by applying 
the variational inequality to suitable test functions, but we do not need them here. 

The following application of the above theorem is a typical building block for 
the implementation of the ideas in the last section. 

Theorem 13. Define X C Z2 by 

X := {(i,j): 1 < i < n, 1 < j < f(i)}, 

where f { 1,... , nr} - {1,. ... m} is a nondecreasing function. Let A be the discrete 
Laplacian on X, corresponding to the choice b _ 1 above. Then 

81 (n + f(n)-2) max{n, f(n)} 

where d is the diameter of X. 

Proof. It follows from the definition of X that d = f+f(nr)-2 and n < IX I < nf((n). 
Our main task is to define the set F of paths. If i < i', then the path from (i, j) 
to (i',j') is the horizontal line from (i,j) to (i',j), followed by the vertical line 
from (i', j) to (i', j'). Because f is monotonic, this is entirely contained in X. If 
i > i' we take a similar path. It may be seen that every path -y has length at most 
n + f(n) - 2. The number of paths through any horizontal edge e E S is at most 
nrIX , while the number through any vertical edge is at most f(n) X . A slight 
modification of the estimate of K in the last theorem completes the proof. 

The number of paths through any edge e E S can be bounded more efficiently 
if further information about f is provided. If f(i) := 1 for 1 < i < n - 1 and 

r 2 
f (n) r=i, then the theorem yields /p1 (2V)while one actually has pl 7 
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for large n. It would be valuable to determine the largest constant c such that 
ALl > c/n2 for all graphs of the type described in the above theorem, subject to 
f (n) < n. It appears that even the continuous analogue of this problem is unsolved. 

10. THE LAPLACIAN IN N DIMENSIONS 

In the applications that we have considered so far, we have taken advantage of 
the fact that the boundary conditions introduced are associated with finite rank 
perturbations of the operator. This is not an essential feature of the method. In this 
section we describe briefly the modifications to the above ideas needed to provide 
enclosures of the eigenvalues of a partial differential operator. We will consider only 
the case in which H :=-/A, acting in L2 (Q) subject to NBC, where Q is a bounded 
region in RfN with piecewise smooth boundary. However, the same method applies 
to variable coefficient elliptic operators subject to other boundary conditions. By 
the eigenvalues of any region Q we mean the eigenvalues of -A acting in L2 (Q) 
subject to NBC. 

If the region Q is diffeomorphic to the unit ball B, Plum [9] has described a 
method of obtaining enclosures on the eigenvalues by transferring the operator to 
L2 (B, m(x)dx) where m is a suitable positive weight, and then using his coefficient 
homotopy method. This cannot be adapted to treat the case in which Q contains 
more than one hole. The method described below is capable of dealing with regions 
containing any number of holes. 

Suppose we wish to find all of the eigenvalues of a region Q which are smaller 
than a given number E > 0. The first step is to divide the region into subregions 
{ Qi}k= each with a piecewise smooth boundary. We assume that enclosures of the 
eigenvalues less than E of each subregion are known, either because its eigenvalues 
are exactly computable or because it is small enough with a regular enough shape 
for 0 to be its only eigenvalue below E. We also assume that the subregions can be 
recombined in pairs in a hierarchical fashion to recover the original set Q. The task 
therefore is to obtain enclosures of the eigenvalues of the union of two regions which 
have some common boundary when we already have enclosures of the eigenvalues 
of the individual regions. 

Let U, V be disjoint bounded connected regions in RN with piecewise smooth 
boundaries and suppose that their common boundary B is a nonempty (N - 1)- 
dimensional surface. Put Q := U U V. U B. Suppose also that we have accurate 
enclosures of all the eigenvalues of each region up to the number E. If we combine 
the two lists of eigenvalues into a single increasing list {,ui (0) }, then this list provides 
the eigenvalues of the operator Ho = -A acting in L2(Q) subject to NBC on 
AU U &V. Note that the number 0 is an eigenvalue of multiplicity 2. 

We introduce a family of quadratic forms Q, defined for 0 < s < oo, all having the 
same quadratic form domain Do W1'2(U) ? W1'2(V). A core for this subspace 
consists of all functions on Q which are Cl except that they are allowed to be 
discontinuous as one crosses B. Every function f E Do has L2 boundary values on 
B which we denote by f? depending upon which side of B one approaches it from. 
We then define 

QS(f) jIVfl2 ? If+ - f2, 

where the second integral is with respect to the natural surface measure on B. 
It is evident that the forms Q, are monotonic increasing. It may be shown that 
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the perturbation term is relatively compact, so that the right-hand side is the 
closed form associated with a certain nonnegative self-adjoint operator Hs. The 
eigenvalues of Hs are increasing real-analytic functions of s by [6]. 

Since the quadratic forms are monotonic increasing as a function of s they con- 
verge to a limit Q defined by 

Q(f) lim QW(f)v s-+oo 

where we adopt the standard convention [2] that Q(f) = +oo whenever f does not 
lie in the form domain D of Q. It is clear that 

D = {f E Do :f+=f- on B}. 

This space is exactly W1'2(Q), so the operator associated with Q is H -A acting 
in L2 (Q) subject to NBC on &Q. An immediate consequence is that 

lim ,u(S) = /Zn 

for every n, the limit being monotone. 
Having chosen a suitable increasing sequence 0 = so < S1 < '< sn one 

obtains accurate enclosures of the eigenvalues of each Hs%+l from those of Hsi by 
the Goerisch-Plum homotopy method. If sn is large enough, then the eigenvalues 
of Hsn will be good enough lower bounds of the eigenvalues of H to enable us to 
apply RR and TL to obtain accurate enclosures of the eigenvalues of H. Many of 
the details are similar to what we have already discussed, and we concentrate on 
the novelties. 

The upper bounds on all eigenvalues are obtained by RR using a suitable test 
function space lying in the quadratic form domain Do or D. An obvious choice 
is to use a finite element subspace in which the elements are linear, but more 
sophisticated elements are probably needed for accurate results. The continuity 
requirement for two elements which have a common edge is suspended if that edge 
lies within B. The restriction of the quadratic form Q, to the test function space 
can be expanded in terms of the values of the elements at the vertices, noting that 
there will be two values at each vertex lying on B, one corresponding to each side 
of B. 

The required lower bounds can only be obtained by TL if one takes a test func- 
tion space lying in the operator domain, which is different for each operator, even 
though every operator H, is equal to -A on its own domain. One can use a i- 
nite element subspace consisting of c2 functions, but this has to respect not only 
the Neumann boundary condition on &W but also certain s-dependent internal 
boundary conditions on B. 

Let of? denote the normal derivatives of f on the two sides of B, both taken in 
the direction from the - side of B to the + side. An application of Gauss' theorem 
shows that the internal boundary condition is 

&f+(x) = &f_ (x) = s{f+(x) - f_ (x)} 

for all x E B. 
It is not possible to demonstrate that the above theory works well in practice, 

without a substantial amount of effort writing the relevant code. The ideas in this 
section have been developed further in a paper by Behnke, Plum and Wieners [1], 
to which we refer for an explicit implementation. 
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